Johnson & Wales University

ScholarsArchive@JWU

Student Research Design & Innovation Symposium

Community Research & Innovation Events

4-25-2023

Impact of Nutrient Resorption on the Fitness and Growth in Iva Frutescens, Salt Marsh Elder

Juliane Bravo-Perez

Devon Gravel

Ryan Tainsh

Follow this and additional works at: https://scholarsarchive.jwu.edu/innov_symposium

Part of the Biology Commons

Impact of Nutrient Resorption on the Fitness and Growth of *Iva frutescens*, Salt Marsh Elder

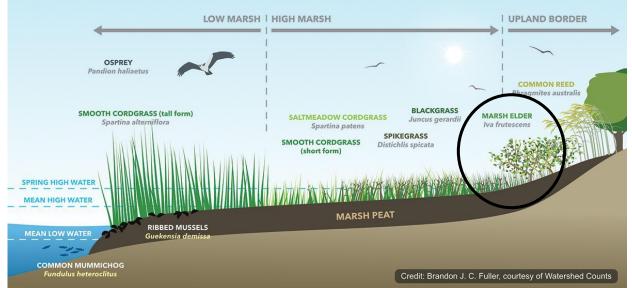
Juliane Bravo-Perez

Devon Gravel

Dr. Ryan Tainsh

Science Department

Nutrient Resorption


- Process of moving nutrients from annual to perennial plant tissues performed by deciduous plant species during leaf senescence
- Acts as a nutrient conservation mechanism for perennial deciduous plants

Reclaimed nutrients provide reservoir of nutrients for subsequent growing seasons

Nutrient Removal to Perennial Tissues

Iva frutescens – Model Organism

- Common name Salt Marsh Elder
- Frequents lower end of upland border in New England salt marshes
- Perennial woody shrub with thick leaf lamina and mild serrations

Research Questions

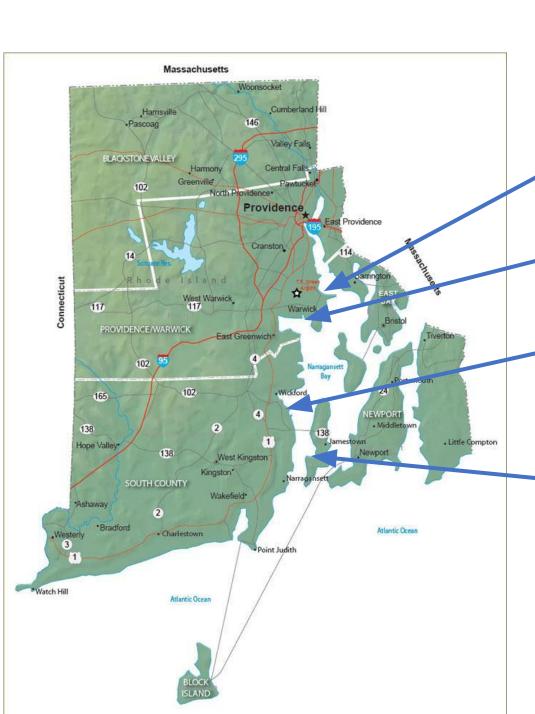
RQ#1: Does nutrient resorption impact the fitness of *Iva frutescens*?

RQ#2: Does nutrient resorption impact the growth of *Iva frutescens*?

RQ#3: Are seeds of *Iva frutescens* plants of consistent mass?

RQ#4: What is baseline N and P resorption proficiency of *Iva frutescens?*

Field Work


Determined field sites

 Four salt marshes in west passage of Narragansett Bay

Determined sample individuals

- 10 randomly selected individuals at each site
- 5 individuals were defoliated prior senescence/nutrient resorption (treatment)
- 5 individuals were unmolested (control)

Field Sites -Four Salt Marshes

Passenonkquis Marsh (Warwick)

Buttonwoods Marsh (Warwick)

Bissel Marsh (S. Kingstown)

Fox Marsh (Jamestown)

- Three along western edge of Narragansett Bay
- One on Conanicut Island (Jamestown)
- Marshes exhibit typical species diversity
- Normal tidal influences present at all sites

Field Work

Fitness measurement

 All mature seeds were collected from each control and treatment individual

Growth measurement

 For each individual, 5 largest stems were measured for diameter (cm)

Lab Work

Each sample (unsorted seeds) was dried to constant weight

Each sample was sorted to isolate seeds from debris

 Debris consisted of inflorescence material and leaves

Lab Work

Sorted and dried seed samples were weighed

- Total plant individual seed mass (all seeds for each sample individual)
- Subset seed mass measurement
 - 100 seeds from 13 randomly selected individuals

Data analysis

 ANOVA performed to determine whether seed mass was consistent among sample individuals across sample sites


Lab Work

Leaf Tissue was separated and prepared

• Dried and prepared for nutrient analysis

Leaf nutrient data analyzed

- Nitrogen and Phosphorus leaf concentration
- % N / dry leaf mass
- % P / dry leaf mass

Results and Conclusions

RQ#1 & RQ#2: The impact of nutrient resorption on *I. frutescens* will be assessed after this growing season by comparing 2021 and 2022 fitness and growth data between control and treatment groups.

- During this academic year, samples were processed in laboratory to manually isolate seeds from other plant material, such as leaves and inflorescence
- These processed samples will be used to determine seed number (fitness) and used to address RQ#1 and #2. Analysis will be conducted during the summer and fall of 2023

RQ#3: Iva frutescens seeds were of consistent mass across all sample sites (no significant difference)

- Consistent seed mass will allow total individual seed mass measurements to be compared across all sample sites when determining the impact of nutrient resorption on the fitness of Iva frutescens
- ANOVA -(F[3,16] = 1.37, p>0.05)

Results and Conclusions

RQ#4: What is baseline N and P resorption proficiency of Iva frutescens?

DATA ADDRESSING RQ#4 WILL BE ENTERED HERE PRIOR TO PRESENTATION DATE

NUTRIENT ANALYSIS CURRENTLY BE CONDUCTED

Future Directions....

 This is an ongoing project - during 2023 growing season, sample individuals will be allowed to proceed normally

Fitness

- Seed production from 2021 and 2022 will be compared to that of 2023 for all sample individuals at all sites
 - Total seed mass and count will be compared between treatment (defoliated) and control (unmolested) plants to determine whether the prevention of nutrient resorption resulted in diminished reproductive fitness.

Growth

- Stem diameter from 2021 and 2022 will be compared to that of 2023 for all sample individuals at all sites
 - Stem diameter will be compared between treatment (defoliated) and control (unmolested)
 plants to determine whether the prevention of nutrient resorption resulted in diminished
 growth capacity

Future Directions....

Nutrient Resorption Proficiency

- Nutrient resorption proficiency (NRP) is the final nutrient concentration of senesced leaves as they are shed by deciduous plants
- NRP is measured as % of nutrient by dry leaf mass
- Nutrient concentrations (N & P) will be measured in a number (TBD) of *Iva frutscens* individuals
- NRP of N & P will be:
 - Among sample sites
 - Analyzed for correlation to individual plant fitness
 - Analyzed for correlation to individual plant growth